

Recursion

Merge Sort Algorithm

Lecture Contents

- Merge Sort
 - Pedagogical uses
 - Algorithm

- Pedagogical uses
 - Divide and conquer
 - Recursion
 - Algorithmic efficiency: 0(n log n)
 - Bubble sort is less efficient: $O(n^2)$
 - Sorting stability

Divide and conquer...

- First we divide the array in half and call mergeSort on each half

Divide and conquer...

The mergeSort method returns sorted arrays (by recursion magic)

• The *terminating condition* is when the array has only one element.

We then merge the two arrays

We then merge the two arrays

2	3	4	6	9

Sorting Algorithm Stability

- A sorting algorithm is *stable* if it preserves the original order of elements that compare as equal
 - This is important if sorting will be done multiple times on the data set
 - For example sort cards by number, then sort them by suit. If the suit-sorting algorithm is stable, then the numerical order of the cards will be preserved.

Recursion

Merge Sort Algorithm

